ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.08974
16
18

Pedestrian Detection by Exemplar-Guided Contrastive Learning

17 November 2021
Zebin Lin
Wenjie Pei
Fanglin Chen
Dafan Zhang
Guangming Lu
ArXivPDFHTML
Abstract

Typical methods for pedestrian detection focus on either tackling mutual occlusions between crowded pedestrians, or dealing with the various scales of pedestrians. Detecting pedestrians with substantial appearance diversities such as different pedestrian silhouettes, different viewpoints or different dressing, remains a crucial challenge. Instead of learning each of these diverse pedestrian appearance features individually as most existing methods do, we propose to perform contrastive learning to guide the feature learning in such a way that the semantic distance between pedestrians with different appearances in the learned feature space is minimized to eliminate the appearance diversities, whilst the distance between pedestrians and background is maximized. To facilitate the efficiency and effectiveness of contrastive learning, we construct an exemplar dictionary with representative pedestrian appearances as prior knowledge to construct effective contrastive training pairs and thus guide contrastive learning. Besides, the constructed exemplar dictionary is further leveraged to evaluate the quality of pedestrian proposals during inference by measuring the semantic distance between the proposal and the exemplar dictionary. Extensive experiments on both daytime and nighttime pedestrian detection validate the effectiveness of the proposed method.

View on arXiv
Comments on this paper