ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.09085
14
2

Network Generation with Differential Privacy

17 November 2021
Xu Zheng
Nicholas McCarthy
Jer Hayes
ArXivPDFHTML
Abstract

We consider the problem of generating private synthetic versions of real-world graphs containing private information while maintaining the utility of generated graphs. Differential privacy is a gold standard for data privacy, and the introduction of the differentially private stochastic gradient descent (DP-SGD) algorithm has facilitated the training of private neural models in a number of domains. Recent advances in graph generation via deep generative networks have produced several high performing models. We evaluate and compare state-of-the-art models including adjacency matrix based models and edge based models, and show a practical implementation that favours the edge-list approach utilizing the Gaussian noise mechanism when evaluated on commonly used graph datasets. Based on our findings, we propose a generative model that can reproduce the properties of real-world networks while maintaining edge-differential privacy. The proposed model is based on a stochastic neural network that generates discrete edge-list samples and is trained using the Wasserstein GAN objective with the DP-SGD optimizer. Being the first approach to combine these beneficial properties, our model contributes to further research on graph data privacy.

View on arXiv
Comments on this paper