ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.09553
11
12

Continuous learning of spiking networks trained with local rules

18 November 2021
D. Antonov
K. Sviatov
S. Sukhov
ArXivPDFHTML
Abstract

Artificial neural networks (ANNs) experience catastrophic forgetting (CF) during sequential learning. In contrast, the brain can learn continuously without any signs of catastrophic forgetting. Spiking neural networks (SNNs) are the next generation of ANNs with many features borrowed from biological neural networks. Thus, SNNs potentially promise better resilience to CF. In this paper, we study the susceptibility of SNNs to CF and test several biologically inspired methods for mitigating catastrophic forgetting. SNNs are trained with biologically plausible local training rules based on spike-timing-dependent plasticity (STDP). Local training prohibits the direct use of CF prevention methods based on gradients of a global loss function. We developed and tested the method to determine the importance of synapses (weights) based on stochastic Langevin dynamics without the need for the gradients. Several other methods of catastrophic forgetting prevention adapted from analog neural networks were tested as well. The experiments were performed on freely available datasets in the SpykeTorch environment.

View on arXiv
Comments on this paper