ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.10822
96
3
v1v2v3v4 (latest)

New Clocks, Fast Line Formation and Self-Replication Population Protocols

21 November 2021
L. Gąsieniec
P. Spirakis
Grzegorz Stachowiak
ArXiv (abs)PDFHTML
Abstract

In this paper we consider a variant of population protocols in which agents are allowed to be connected by edges, known as the constructors model. During an interaction between two agents the relevant connecting edge can be formed, maintained or eliminated by the transition function. The contributions of this paper are manifold. -- We propose and analyse a novel type of phase clocks allowing to count parallel time Θ(nlog⁡n)\Theta(n\log n)Θ(nlogn) in the constructors model. This new type of clocks can be also implemented in the standard population protocol model assuming a unique leader is available. -- The new clock enables a nearly optimal O(nlog⁡n)O(n\log n)O(nlogn) parallel time spanning line construction which improves dramatically on the best previously known O(n2)O(n^2)O(n2) parallel time solution. -- We define a probabilistic version of bubble-sort in which random comparisons are allowed only between adjacent numbers in the sequence being sorted. We show that rather surprisingly this probabilistic bubble-sort requires O(n2)O(n^2)O(n2) comparisons in expectation, i.e., on the same level as its deterministic counterpart. -- We propose the first self-replication protocol allowing to reproduce a {\em strand} (line-segment carrying information) of length kkk in parallel time O(n(k+log⁡n)).O(n(k+\log n)).O(n(k+logn)). This result is based on the probabilistic bubble-sort argument. This protocol permits also simultaneous replication where lll copies of the strand can be obtained in time O(n(k+log⁡n)log⁡l).O(n(k+\log n)\log l).O(n(k+logn)logl). All protocols in this paper operate with high probability.

View on arXiv
Comments on this paper