ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.11067
9
40

Semi-Supervised Vision Transformers

22 November 2021
Zejia Weng
Xitong Yang
Ang Li
Zuxuan Wu
Yu-Gang Jiang
    ViT
ArXivPDFHTML
Abstract

We study the training of Vision Transformers for semi-supervised image classification. Transformers have recently demonstrated impressive performance on a multitude of supervised learning tasks. Surprisingly, we show Vision Transformers perform significantly worse than Convolutional Neural Networks when only a small set of labeled data is available. Inspired by this observation, we introduce a joint semi-supervised learning framework, Semiformer, which contains a transformer stream, a convolutional stream and a carefully designed fusion module for knowledge sharing between these streams. The convolutional stream is trained on limited labeled data and further used to generate pseudo labels to supervise the training of the transformer stream on unlabeled data. Extensive experiments on ImageNet demonstrate that Semiformer achieves 75.5% top-1 accuracy, outperforming the state-of-the-art by a clear margin. In addition, we show, among other things, Semiformer is a general framework that is compatible with most modern transformer and convolutional neural architectures. Code is available at https://github.com/wengzejia1/Semiformer.

View on arXiv
Comments on this paper