ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12073
19
71

Multi-Person 3D Motion Prediction with Multi-Range Transformers

23 November 2021
Jiashun Wang
Huazhe Xu
Medhini Narasimhan
Xiaolong Wang
    ViT
ArXivPDFHTML
Abstract

We propose a novel framework for multi-person 3D motion trajectory prediction. Our key observation is that a human's action and behaviors may highly depend on the other persons around. Thus, instead of predicting each human pose trajectory in isolation, we introduce a Multi-Range Transformers model which contains of a local-range encoder for individual motion and a global-range encoder for social interactions. The Transformer decoder then performs prediction for each person by taking a corresponding pose as a query which attends to both local and global-range encoder features. Our model not only outperforms state-of-the-art methods on long-term 3D motion prediction, but also generates diverse social interactions. More interestingly, our model can even predict 15-person motion simultaneously by automatically dividing the persons into different interaction groups. Project page with code is available at https://jiashunwang.github.io/MRT/.

View on arXiv
Comments on this paper