ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12707
10
244

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

24 November 2021
Wenhao Li
Hong Liu
H. Tang
Pichao Wang
Luc Van Gool
    ViT
ArXivPDFHTML
Abstract

Estimating 3D human poses from monocular videos is a challenging task due to depth ambiguity and self-occlusion. Most existing works attempt to solve both issues by exploiting spatial and temporal relationships. However, those works ignore the fact that it is an inverse problem where multiple feasible solutions (i.e., hypotheses) exist. To relieve this limitation, we propose a Multi-Hypothesis Transformer (MHFormer) that learns spatio-temporal representations of multiple plausible pose hypotheses. In order to effectively model multi-hypothesis dependencies and build strong relationships across hypothesis features, the task is decomposed into three stages: (i) Generate multiple initial hypothesis representations; (ii) Model self-hypothesis communication, merge multiple hypotheses into a single converged representation and then partition it into several diverged hypotheses; (iii) Learn cross-hypothesis communication and aggregate the multi-hypothesis features to synthesize the final 3D pose. Through the above processes, the final representation is enhanced and the synthesized pose is much more accurate. Extensive experiments show that MHFormer achieves state-of-the-art results on two challenging datasets: Human3.6M and MPI-INF-3DHP. Without bells and whistles, its performance surpasses the previous best result by a large margin of 3% on Human3.6M. Code and models are available at \url{https://github.com/Vegetebird/MHFormer}.

View on arXiv
Comments on this paper