ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.12941
8
11

Exploiting Both Domain-specific and Invariant Knowledge via a Win-win Transformer for Unsupervised Domain Adaptation

25 November 2021
Wen-hui Ma
Jinming Zhang
Shuang Li
Chi Harold Liu
Yulin Wang
Wei Li
    ViT
ArXivPDFHTML
Abstract

Unsupervised Domain Adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Most existing UDA approaches enable knowledge transfer via learning domain-invariant representation and sharing one classifier across two domains. However, ignoring the domain-specific information that are related to the task, and forcing a unified classifier to fit both domains will limit the feature expressiveness in each domain. In this paper, by observing that the Transformer architecture with comparable parameters can generate more transferable representations than CNN counterparts, we propose a Win-Win TRansformer framework (WinTR) that separately explores the domain-specific knowledge for each domain and meanwhile interchanges cross-domain knowledge. Specifically, we learn two different mappings using two individual classification tokens in the Transformer, and design for each one a domain-specific classifier. The cross-domain knowledge is transferred via source guided label refinement and single-sided feature alignment with respect to source or target, which keeps the integrity of domain-specific information. Extensive experiments on three benchmark datasets show that our method outperforms the state-of-the-art UDA methods, validating the effectiveness of exploiting both domain-specific and invariant

View on arXiv
Comments on this paper