92
41

Neural network stochastic differential equation models with applications to financial data forecasting

Abstract

In this article, we employ a collection of stochastic differential equations with drift and diffusion coefficients approximated by neural networks to predict the trend of chaotic time series which has big jump properties. Our contributions are, first, we propose a model called L\'evy induced stochastic differential equation network, which explores compounded stochastic differential equations with α\alpha-stable L\'evy motion to model complex time series data and solve the problem through neural network approximation. Second, we theoretically prove the convergence of our algorithm with respect to hyper-parameters of the neural network, and obtain the error bound without curse of dimensionality. Finally, we illustrate our method by applying it to real financial time series data and find the accuracy increases through the use of non-Gaussian L\'evy processes. We also present detailed comparisons in terms of data patterns, various models, different shapes of L\'evy motion and the prediction lengths.

View on arXiv
Comments on this paper