ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.13585
13
0
v1v2 (latest)

Evaluating importance of nodes in complex networks with local volume information dimension

23 November 2021
Hanwen Li
Qiuyan Shang
Tianxiang Zhan
Yong Deng
ArXiv (abs)PDFHTML
Abstract

How to evaluate the importance of nodes is essential in research of complex network. There are many methods proposed for solving this problem, but they still have room to be improved. In this paper, a new approach called local volume information dimension is proposed. In this method, the sum of degree of nodes within different distances of central node is calculated. The information within the certain distance is described by the information entropy. Compared to other methods, the proposed method considers the information of the nodes from different distances more comprehensively. For the purpose of showing the effectiveness of the proposed method, experiments on real-world networks are implemented. Promising results indicate the effectiveness of the proposed method.

View on arXiv
Comments on this paper