ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.14037
36
1
v1v2 (latest)

Statically Detecting Adversarial Malware through Randomised Chaining

28 November 2021
Matthew Crawford
Wei Wang
Ruoxi Sun
Minhui Xue
    AAML
ArXiv (abs)PDFHTML
Abstract

With the rapid growth of malware attacks, more antivirus developers consider deploying machine learning technologies into their productions. Researchers and developers published various machine learning-based detectors with high precision on malware detection in recent years. Although numerous machine learning-based malware detectors are available, they face various machine learning-targeted attacks, including evasion and adversarial attacks. This project explores how and why adversarial examples evade malware detectors, then proposes a randomised chaining method to defend against adversarial malware statically. This research is crucial for working towards combating the pertinent malware cybercrime.

View on arXiv
Comments on this paper