ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.14255
18
36

Automated Runtime-Aware Scheduling for Multi-Tenant DNN Inference on GPU

28 November 2021
Fuxun Yu
Shawn Bray
Di Wang
Longfei Shangguan
Xulong Tang
Chenchen Liu
Xiang Chen
ArXivPDFHTML
Abstract

With the fast development of deep neural networks (DNNs), many real-world applications are adopting multiple models to conduct compound tasks, such as co-running classification, detection, and segmentation models on autonomous vehicles. Such multi-tenant DNN inference cases greatly exacerbate the computational complexity and call for comprehensive collaboration for graph-level operator scheduling, runtime-level resource awareness, as well as hardware scheduler support. However, the current scheduling support for such multi-tenant inference is still relatively backward. In this work, we propose a resource-aware scheduling framework for efficient multi-tenant DNN inference on GPU, which automatically coordinates DNN computing in different execution levels. Leveraging the unified scheduling intermediate representation and the automated ML-based searching algorithm, optimal schedules could be generated to wisely adjust model concurrency and interleave DNN model operators, maintaining a continuously balanced resource utilization across the entire inference process, and eventually improving the runtime efficiency. Experiments show that we could consistently achieve 1.3-1.7x speed-up, compared to regular DNN runtime libraries (e.g., CuDNN, TVM) and particular concurrent scheduling methods (e.g., NVIDIA Multi-Stream).

View on arXiv
Comments on this paper