ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2111.14672
9
29

Human Performance Capture from Monocular Video in the Wild

29 November 2021
Chen Guo
Xu Chen
Jie Song
Otmar Hilliges
    3DH
ArXivPDFHTML
Abstract

Capturing the dynamically deforming 3D shape of clothed human is essential for numerous applications, including VR/AR, autonomous driving, and human-computer interaction. Existing methods either require a highly specialized capturing setup, such as expensive multi-view imaging systems, or they lack robustness to challenging body poses. In this work, we propose a method capable of capturing the dynamic 3D human shape from a monocular video featuring challenging body poses, without any additional input. We first build a 3D template human model of the subject based on a learned regression model. We then track this template model's deformation under challenging body articulations based on 2D image observations. Our method outperforms state-of-the-art methods on an in-the-wild human video dataset 3DPW. Moreover, we demonstrate its efficacy in robustness and generalizability on videos from iPER datasets.

View on arXiv
Comments on this paper