ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.00734
19
61

Personalized Federated Learning with Adaptive Batchnorm for Healthcare

1 December 2021
Wang Lu
Jindong Wang
Yiqiang Chen
Xin Qin
Renjun Xu
Dimitrios Dimitriadis
Tao Qin
    FedML
    OOD
ArXivPDFHTML
Abstract

There is a growing interest in applying machine learning techniques to healthcare. Recently, federated learning (FL) is gaining popularity since it allows researchers to train powerful models without compromising data privacy and security. However, the performance of existing FL approaches often deteriorates when encountering non-iid situations where there exist distribution gaps among clients, and few previous efforts focus on personalization in healthcare. In this article, we propose FedAP to tackle domain shifts and then obtain personalized models for local clients. FedAP learns the similarity between clients based on the statistics of the batch normalization layers while preserving the specificity of each client with different local batch normalization. Comprehensive experiments on five healthcare benchmarks demonstrate that FedAP achieves better accuracy compared to state-of-the-art methods (e.g., 10% accuracy improvement for PAMAP2) with faster convergence speed.

View on arXiv
Comments on this paper