ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.02499
19
8
v1v2 (latest)

Radial Basis Function Approximation with Distributively Stored Data on Spheres

5 December 2021
Han Feng
Shao-Bo Lin
Ding-Xuan Zhou
ArXiv (abs)PDFHTML
Abstract

This paper proposes a distributed weighted regularized least squares algorithm (DWRLS) based on spherical radial basis functions and spherical quadrature rules to tackle spherical data that are stored across numerous local servers and cannot be shared with each other. Via developing a novel integral operator approach, we succeed in deriving optimal approximation rates for DWRLS and theoretically demonstrate that DWRLS performs similarly as running a weighted regularized least squares algorithm with the whole data on a large enough machine. This interesting finding implies that distributed learning is capable of sufficiently exploiting potential values of distributively stored spherical data, even though every local server cannot access all the data.

View on arXiv
Comments on this paper