ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03258
17
20

DoodleFormer: Creative Sketch Drawing with Transformers

6 December 2021
A. Bhunia
Salman Khan
Hisham Cholakkal
Rao Muhammad Anwer
F. Khan
Jorma T. Laaksonen
M. Felsberg
    ViT
ArXivPDFHTML
Abstract

Creative sketching or doodling is an expressive activity, where imaginative and previously unseen depictions of everyday visual objects are drawn. Creative sketch image generation is a challenging vision problem, where the task is to generate diverse, yet realistic creative sketches possessing the unseen composition of the visual-world objects. Here, we propose a novel coarse-to-fine two-stage framework, DoodleFormer, that decomposes the creative sketch generation problem into the creation of coarse sketch composition followed by the incorporation of fine-details in the sketch. We introduce graph-aware transformer encoders that effectively capture global dynamic as well as local static structural relations among different body parts. To ensure diversity of the generated creative sketches, we introduce a probabilistic coarse sketch decoder that explicitly models the variations of each sketch body part to be drawn. Experiments are performed on two creative sketch datasets: Creative Birds and Creative Creatures. Our qualitative, quantitative and human-based evaluations show that DoodleFormer outperforms the state-of-the-art on both datasets, yielding realistic and diverse creative sketches. On Creative Creatures, DoodleFormer achieves an absolute gain of 25 in terms of Fr`echet inception distance (FID) over the state-of-the-art. We also demonstrate the effectiveness of DoodleFormer for related applications of text to creative sketch generation and sketch completion.

View on arXiv
Comments on this paper