ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03259
9
1

Novel Local Radiomic Bayesian Classifiers for Non-Invasive Prediction of MGMT Methylation Status in Glioblastoma

30 November 2021
M. Rao
ArXivPDFHTML
Abstract

Glioblastoma, an aggressive brain cancer, is amongst the most lethal of all cancers. Expression of the O6-methylguanine-DNA-methyltransferase (MGMT) gene in glioblastoma tumor tissue is of clinical importance as it has a significant effect on the efficacy of Temozolomide, the primary chemotherapy treatment administered to glioblastoma patients. Currently, MGMT methylation is determined through an invasive brain biopsy and subsequent genetic analysis of the extracted tumor tissue. In this work, we present novel Bayesian classifiers that make probabilistic predictions of MGMT methylation status based on radiomic features extracted from FLAIR-sequence magnetic resonance imagery (MRIs). We implement local radiomic techniques to produce radiomic activation maps and analyze MRIs for the MGMT biomarker based on statistical features of raw voxel-intensities. We demonstrate the ability for simple Bayesian classifiers to provide a boost in predictive performance when modelling local radiomic data rather than global features. The presented techniques provide a non-invasive MRI-based approach to determining MGMT methylation status in glioblastoma patients.

View on arXiv
Comments on this paper