ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03497
37
19

Dataset Geography: Mapping Language Data to Language Users

7 December 2021
Fahim Faisal
Yinkai Wang
Antonios Anastasopoulos
ArXivPDFHTML
Abstract

As language technologies become more ubiquitous, there are increasing efforts towards expanding the language diversity and coverage of natural language processing (NLP) systems. Arguably, the most important factor influencing the quality of modern NLP systems is data availability. In this work, we study the geographical representativeness of NLP datasets, aiming to quantify if and by how much do NLP datasets match the expected needs of the language speakers. In doing so, we use entity recognition and linking systems, also making important observations about their cross-lingual consistency and giving suggestions for more robust evaluation. Last, we explore some geographical and economic factors that may explain the observed dataset distributions. Code and data are available here: https://github.com/ffaisal93/dataset_geography. Additional visualizations are available here: https://nlp.cs.gmu.edu/project/datasetmaps/.

View on arXiv
Comments on this paper