ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.03915
25
10

Embedding Gradient-based Optimization in Image Registration Networks

7 December 2021
Huaqi Qiu
Kerstin Hammernik
C. Qin
C. L. P. Chen
Daniel Rueckert
ArXivPDFHTML
Abstract

Deep learning (DL) image registration methods amortize the costly pair-wise iterative optimization by training deep neural networks to predict the optimal transformation in one fast forward-pass. In this work, we bridge the gap between traditional iterative energy optimization-based registration and network-based registration, and propose Gradient Descent Network for Image Registration (GraDIRN). Our proposed approach trains a DL network that embeds unrolled multiresolution gradient-based energy optimization in its forward pass, which explicitly enforces image dissimilarity minimization in its update steps. Extensive evaluations were performed on registration tasks using 2D cardiac MR and 3D brain MR images. We demonstrate that our approach achieved state-of-the-art registration performance while using fewer learned parameters, with good data efficiency and domain robustness.

View on arXiv
Comments on this paper