ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.05341
225
21
v1v2v3 (latest)

Hyperdimensional Feature Fusion for Interpretable Out-Of-Distribution Detection

10 December 2021
Samuel Wilson
Tobias Fischer
Niko Sünderhauf
Feras Dayoub
    OODD
ArXiv (abs)PDFHTML
Abstract

We introduce powerful ideas from Hyperdimensional Computing into the challenging field of Out-of-Distribution (OOD) detection. In contrast to most existing work that performs OOD detection based on only a single layer of a neural network, we use similarity-preserving semi-orthogonal projection matrices to project the feature maps from multiple layers into a common vector space. By repeatedly applying the bundling operation ⊕\oplus⊕, we create expressive class-specific descriptor vectors for all in-distribution classes. At test time, a simple and efficient cosine similarity calculation between descriptor vectors consistently identifies OOD samples with better performance than the current state-of-the-art. We show that the hyperdimensional fusion of multiple network layers is critical to achieve best general performance.

View on arXiv
Comments on this paper