ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.05598
15
8

PERF: Performant, Explicit Radiance Fields

10 December 2021
Sverker Rasmuson
Erik Sintorn
Ulf Assarsson
ArXivPDFHTML
Abstract

We present a novel way of approaching image-based 3D reconstruction based on radiance fields. The problem of volumetric reconstruction is formulated as a non-linear least-squares problem and solved explicitly without the use of neural networks. This enables the use of solvers with a higher rate of convergence than what is typically used for neural networks, and fewer iterations are required until convergence. The volume is represented using a grid of voxels, with the scene surrounded by a hierarchy of environment maps. This makes it possible to get clean reconstructions of 360{\deg} scenes where the foreground and background is separated. A number of synthetic and real scenes from well known benchmark-suites are successfully reconstructed with quality on par with state-of-the-art methods, but at significantly reduced reconstruction times.

View on arXiv
Comments on this paper