ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06148
11
2

Programming with Neural Surrogates of Programs

12 December 2021
Alex Renda
Yi Ding
Michael Carbin
ArXivPDFHTML
Abstract

Surrogates, models that mimic the behavior of programs, form the basis of a variety of development workflows. We study three surrogate-based design patterns, evaluating each in case studies on a large-scale CPU simulator. With surrogate compilation, programmers develop a surrogate that mimics the behavior of a program to deploy to end-users in place of the original program. Surrogate compilation accelerates the CPU simulator under study by 1.6×1.6\times1.6×. With surrogate adaptation, programmers develop a surrogate of a program then retrain that surrogate on a different task. Surrogate adaptation decreases the simulator's error by up to 50%50\%50%. With surrogate optimization, programmers develop a surrogate of a program, optimize input parameters of the surrogate, then plug the optimized input parameters back into the original program. Surrogate optimization finds simulation parameters that decrease the simulator's error by 5%5\%5% compared to the error induced by expert-set parameters. In this paper we formalize this taxonomy of surrogate-based design patterns. We further describe the programming methodology common to all three design patterns. Our work builds a foundation for the emerging class of workflows based on programming with surrogates of programs.

View on arXiv
Comments on this paper