ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.06712
6
3

A Case For Noisy Shallow Gate-Based Circuits In Quantum Machine Learning

13 December 2021
Patrick Selig
Niall Murphy
Ashwin Sundareswaran R
D. Redmond
Simon Caton
ArXivPDFHTML
Abstract

There is increasing interest in the development of gate-based quantum circuits for the training of machine learning models. Yet, little is understood concerning the parameters of circuit design, and the effects of noise and other measurement errors on the performance of quantum machine learning models. In this paper, we explore the practical implications of key circuit design parameters (number of qubits, depth etc.) using several standard machine learning datasets and IBM's Qiskit simulator. In total we evaluate over 6500 unique circuits with n≈120700n \approx 120700n≈120700 individual runs. We find that in general shallow (low depth) wide (more qubits) circuit topologies tend to outperform deeper ones in settings without noise. We also explore the implications and effects of different notions of noise and discuss circuit topologies that are more / less robust to noise for classification machine learning tasks. Based on the findings we define guidelines for circuit topologies that show near-term promise for the realisation of quantum machine learning algorithms using gate-based NISQ quantum computer.

View on arXiv
Comments on this paper