ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.08954
197
148
v1v2v3 (latest)

Advancing Residual Learning towards Powerful Deep Spiking Neural Networks

15 December 2021
Yifan Hu
Yujie Wu
Yujie Wu
Man Yao
ArXiv (abs)PDFHTML
Abstract

Despite the rapid progress of neuromorphic computing, inadequate capacity and insufficient representation power of spiking neural networks (SNNs) severely restrict their application scope in practice. Residual learning and shortcuts have been evidenced as an important approach for training deep neural networks, but rarely did previous work assess their applicability to the characteristics of spike-based communication and spatiotemporal dynamics. In this paper, we first identify that this negligence leads to impeded information flow and accompanying degradation problem in previous residual SNNs. Then we propose a novel SNN-oriented residual block, MS-ResNet, which is able to significantly extend the depth of directly trained SNNs, e.g. up to 482 layers on CIFAR-10 and 104 layers on ImageNet, without observing any slight degradation problem. We validate the effectiveness of MS-ResNet on both frame-based and neuromorphic datasets, and MS-ResNet104 achieves a superior result of 76.02% accuracy on ImageNet, the first time in the domain of directly trained SNNs. Great energy efficiency is also observed that on average only one spike per neuron is needed to classify an input sample. We believe our powerful and scalable models will provide a strong support for further exploration of SNNs.

View on arXiv
Comments on this paper