ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.09628
8
13

Sparsifying Sparse Representations for Passage Retrieval by Top-kkk Masking

17 December 2021
Jheng-Hong Yang
Xueguang Ma
Jimmy J. Lin
ArXivPDFHTML
Abstract

Sparse lexical representation learning has demonstrated much progress in improving passage retrieval effectiveness in recent models such as DeepImpact, uniCOIL, and SPLADE. This paper describes a straightforward yet effective approach for sparsifying lexical representations for passage retrieval, building on SPLADE by introducing a top-kkk masking scheme to control sparsity and a self-learning method to coax masked representations to mimic unmasked representations. A basic implementation of our model is competitive with more sophisticated approaches and achieves a good balance between effectiveness and efficiency. The simplicity of our methods opens the door for future explorations in lexical representation learning for passage retrieval.

View on arXiv
Comments on this paper