ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.10982
10
13

Generalized Few-Shot Semantic Segmentation: All You Need is Fine-Tuning

21 December 2021
Josh Myers-Dean
Yinan Zhao
Brian L. Price
Scott D. Cohen
Danna Gurari
    CLL
ArXivPDFHTML
Abstract

Generalized few-shot semantic segmentation was introduced to move beyond only evaluating few-shot segmentation models on novel classes to include testing their ability to remember base classes. While the current state-of-the-art approach is based on meta-learning, it performs poorly and saturates in learning after observing only a few shots. We propose the first fine-tuning solution, and demonstrate that it addresses the saturation problem while achieving state-of-the-art results on two datasets, PASCAL-5i and COCO-20i. We also show that it outperforms existing methods, whether fine-tuning multiple final layers or only the final layer. Finally, we present a triplet loss regularization that shows how to redistribute the balance of performance between novel and base categories so that there is a smaller gap between them.

View on arXiv
Comments on this paper