ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.10985
14
1

Learned ISTA with Error-based Thresholding for Adaptive Sparse Coding

21 December 2021
Ziang Li
Kailun Wu
Yiwen Guo
Changshui Zhang
ArXivPDFHTML
Abstract

Drawing on theoretical insights, we advocate an error-based thresholding (EBT) mechanism for learned ISTA (LISTA), which utilizes a function of the layer-wise reconstruction error to suggest a specific threshold for each observation in the shrinkage function of each layer. We show that the proposed EBT mechanism well disentangles the learnable parameters in the shrinkage functions from the reconstruction errors, endowing the obtained models with improved adaptivity to possible data variations. With rigorous analyses, we further show that the proposed EBT also leads to a faster convergence on the basis of LISTA or its variants, in addition to its higher adaptivity. Extensive experimental results confirm our theoretical analyses and verify the effectiveness of our methods.

View on arXiv
Comments on this paper