ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.11325
26
35

iSegFormer: Interactive Segmentation via Transformers with Application to 3D Knee MR Images

21 December 2021
Qin Liu
Zhenlin Xu
Yining Jiao
Marc Niethammer
    ViT
    MedIm
ArXivPDFHTML
Abstract

We propose iSegFormer, a memory-efficient transformer that combines a Swin transformer with a lightweight multilayer perceptron (MLP) decoder. With the efficient Swin transformer blocks for hierarchical self-attention and the simple MLP decoder for aggregating both local and global attention, iSegFormer learns powerful representations while achieving high computational efficiencies. Specifically, we apply iSegFormer to interactive 3D medical image segmentation.

View on arXiv
Comments on this paper