ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.11641
19
69

JoJoGAN: One Shot Face Stylization

22 December 2021
Min Jin Chong
David A. Forsyth
    CVBM
    GAN
ArXivPDFHTML
Abstract

A style mapper applies some fixed style to its input images (so, for example, taking faces to cartoons). This paper describes a simple procedure -- JoJoGAN -- to learn a style mapper from a single example of the style. JoJoGAN uses a GAN inversion procedure and StyleGAN's style-mixing property to produce a substantial paired dataset from a single example style. The paired dataset is then used to fine-tune a StyleGAN. An image can then be style mapped by GAN-inversion followed by the fine-tuned StyleGAN. JoJoGAN needs just one reference and as little as 30 seconds of training time. JoJoGAN can use extreme style references (say, animal faces) successfully. Furthermore, one can control what aspects of the style are used and how much of the style is applied. Qualitative and quantitative evaluation show that JoJoGAN produces high quality high resolution images that vastly outperform the current state-of-the-art.

View on arXiv
Comments on this paper