ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.14478
8
30

Semantic Feature Extraction for Generalized Zero-shot Learning

29 December 2021
Junhan Kim
Kyuhong Shim
B. Shim
    VLM
ArXivPDFHTML
Abstract

Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes using the attribute. In this paper, we put forth a new GZSL technique that improves the GZSL classification performance greatly. Key idea of the proposed approach, henceforth referred to as semantic feature extraction-based GZSL (SE-GZSL), is to use the semantic feature containing only attribute-related information in learning the relationship between the image and the attribute. In doing so, we can remove the interference, if any, caused by the attribute-irrelevant information contained in the image feature. To train a network extracting the semantic feature, we present two novel loss functions, 1) mutual information-based loss to capture all the attribute-related information in the image feature and 2) similarity-based loss to remove unwanted attribute-irrelevant information. From extensive experiments using various datasets, we show that the proposed SE-GZSL technique outperforms conventional GZSL approaches by a large margin.

View on arXiv
Comments on this paper