ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.14815
17
6

Materialized Knowledge Bases from Commonsense Transformers

29 December 2021
Tuan-Phong Nguyen
Simon Razniewski
ArXivPDFHTML
Abstract

Starting from the COMET methodology by Bosselut et al. (2019), generating commonsense knowledge directly from pre-trained language models has recently received significant attention. Surprisingly, up to now no materialized resource of commonsense knowledge generated this way is publicly available. This paper fills this gap, and uses the materialized resources to perform a detailed analysis of the potential of this approach in terms of precision and recall. Furthermore, we identify common problem cases, and outline use cases enabled by materialized resources. We posit that the availability of these resources is important for the advancement of the field, as it enables an off-the-shelf-use of the resulting knowledge, as well as further analyses on its strengths and weaknesses.

View on arXiv
Comments on this paper