ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.15089
12
151

Causal Attention for Interpretable and Generalizable Graph Classification

30 December 2021
Yongduo Sui
Xiang Wang
Jiancan Wu
Min-Bin Lin
Xiangnan He
Tat-Seng Chua
    CML
    OOD
ArXivPDFHTML
Abstract

In graph classification, attention and pooling-based graph neural networks (GNNs) prevail to extract the critical features from the input graph and support the prediction. They mostly follow the paradigm of learning to attend, which maximizes the mutual information between the attended graph and the ground-truth label. However, this paradigm makes GNN classifiers recklessly absorb all the statistical correlations between input features and labels in the training data, without distinguishing the causal and noncausal effects of features. Instead of underscoring the causal features, the attended graphs are prone to visit the noncausal features as the shortcut to predictions. Such shortcut features might easily change outside the training distribution, thereby making the GNN classifiers suffer from poor generalization. In this work, we take a causal look at the GNN modeling for graph classification. With our causal assumption, the shortcut feature serves as a confounder between the causal feature and prediction. It tricks the classifier to learn spurious correlations that facilitate the prediction in in-distribution (ID) test evaluation, while causing the performance drop in out-of-distribution (OOD) test data. To endow the classifier with better interpretation and generalization, we propose the Causal Attention Learning (CAL) strategy, which discovers the causal patterns and mitigates the confounding effect of shortcuts. Specifically, we employ attention modules to estimate the causal and shortcut features of the input graph. We then parameterize the backdoor adjustment of causal theory -- combine each causal feature with various shortcut features. It encourages the stable relationships between the causal estimation and prediction, regardless of the changes in shortcut parts and distributions. Extensive experiments on synthetic and real-world datasets demonstrate the effectiveness of CAL.

View on arXiv
Comments on this paper