ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2112.15550
22
3

Improving Baselines in the Wild

31 December 2021
Kazuki Irie
Imanol Schlag
Róbert Csordás
Jürgen Schmidhuber
ArXivPDFHTML
Abstract

We share our experience with the recently released WILDS benchmark, a collection of ten datasets dedicated to developing models and training strategies which are robust to domain shifts. Several experiments yield a couple of critical observations which we believe are of general interest for any future work on WILDS. Our study focuses on two datasets: iWildCam and FMoW. We show that (1) Conducting separate cross-validation for each evaluation metric is crucial for both datasets, (2) A weak correlation between validation and test performance might make model development difficult for iWildCam, (3) Minor changes in the training of hyper-parameters improve the baseline by a relatively large margin (mainly on FMoW), (4) There is a strong correlation between certain domains and certain target labels (mainly on iWildCam). To the best of our knowledge, no prior work on these datasets has reported these observations despite their obvious importance. Our code is public.

View on arXiv
Comments on this paper