Acute and chronic wounds with varying etiologies burden the healthcare
systems economically. The advanced wound care market is estimated to reach 22billionby2024.Woundcareprofessionalsprovideproperdiagnosisandtreatmentwithheavyrelianceonimagesandimagedocumentation.Segmentationofwoundboundariesinimagesisakeycomponentofthecareanddiagnosisprotocolsinceitisimportanttoestimatetheareaofthewoundandprovidequantitativemeasurementforthetreatment.Unfortunately,thisprocessisverytime−consumingandrequiresahighlevelofexpertise.Recentlyautomaticwoundsegmentationmethodsbasedondeeplearninghaveshownpromisingperformancebutrequirelargedatasetsfortraininganditisunclearwhichmethodsperformbetter.Toaddresstheseissues,weproposetheFootUlcerSegmentationchallenge(FUSeg)organizedinconjunctionwiththe2021InternationalConferenceonMedicalImageComputingandComputerAssistedIntervention(MICCAI).Webuiltawoundimagedatasetcontaining1,210footulcerimagescollectedover2yearsfrom889patients.Itispixel−wiseannotatedbywoundcareexpertsandsplitintoatrainingsetwith1010imagesandatestingsetwith200imagesforevaluation.Teamsaroundtheworlddevelopedautomatedmethodstopredictwoundsegmentationsonthetestingsetofwhichannotationswerekeptprivate.ThepredictionswereevaluatedandrankedbasedontheaverageDicecoefficient.TheFUSegchallengeremainsanopenchallengeasabenchmarkforwoundsegmentationaftertheconference.