ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.00864
14
5

Secret Sharing Sharing For Highly Scalable Secure Aggregation

3 January 2022
Timothy Stevens
Joseph P. Near
Christian Skalka
    FedML
ArXivPDFHTML
Abstract

Secure Multiparty Computation (MPC) can improve the security and privacy of data owners while allowing analysts to perform high quality analytics. Secure aggregation is a secure distributed mechanism to support federated deep learning without the need for trusted third parties. In this paper we present a highly performant secure aggregation protocol with sub-linear communication complexity. Our protocol achieves greater communication and computation efficiencies through a group-based approach. It is similar to secret sharing protocols extended to vectors of values-aka gradients-but within groups we add an additional layer of secret sharing of shares themselves-aka sharding. This ensures privacy of secret inputs in the standard real/ideal security paradigm, in both semi-honest and malicious settings where the server may collude with the adversary. In the malicious setting with 5% corrupt clients and 5% dropouts, our protocol can aggregate over a federation with 100,000,000 members and vectors of length 100 while requiring each client to communicate with only 350 other clients. The concrete computation cost for this aggregation is less than half a second for the server and less than 100ms for the client.

View on arXiv
Comments on this paper