ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.01381
14
8

Graph Decipher: A transparent dual-attention graph neural network to understand the message-passing mechanism for the node classification

4 January 2022
Yan Pang
Chao Liu
    GNN
ArXivPDFHTML
Abstract

Graph neural networks can be effectively applied to find solutions for many real-world problems across widely diverse fields. The success of graph neural networks is linked to the message-passing mechanism on the graph, however, the message-aggregating behavior is still not entirely clear in most algorithms. To improve functionality, we propose a new transparent network called Graph Decipher to investigate the message-passing mechanism by prioritizing in two main components: the graph structure and node attributes, at the graph, feature, and global levels on a graph under the node classification task. However, the computation burden now becomes the most significant issue because the relevance of both graph structure and node attributes are computed on a graph. In order to solve this issue, only relevant representative node attributes are extracted by graph feature filters, allowing calculations to be performed in a category-oriented manner. Experiments on seven datasets show that Graph Decipher achieves state-of-the-art performance while imposing a substantially lower computation burden under the node classification task. Additionally, since our algorithm has the ability to explore the representative node attributes by category, it is utilized to alleviate the imbalanced node classification problem on multi-class graph datasets.

View on arXiv
Comments on this paper