ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.02018
20
1
v1v2 (latest)

Super-Reparametrizations of Weighted CSPs: Properties and Optimization Perspective

6 January 2022
Tomáš Dlask
Tomáš Werner
S. de Givry
ArXiv (abs)PDFHTML
Abstract

The notion of reparametrizations of Weighted CSPs (WCSPs) (also known as equivalence-preserving transformations of WCSPs) is well-known and finds its use in many algorithms to approximate or bound the optimal WCSP value. In contrast, the concept of super-reparametrizations (which are changes of the weights that keep or increase the WCSP objective for every assignment) was already proposed but never studied in detail. To fill this gap, we present a number of theoretical properties of super-reparametrizations and compare them to those of reparametrizations. Furthermore, we propose a framework for computing upper bounds on the optimal value of the (maximization version of) WCSP using super-reparametrizations. We show that it is in principle possible to employ arbitrary (under some technical conditions) constraint propagation rules to improve the bound. For arc consistency in particular, the method reduces to the known Virtual AC (VAC) algorithm. Newly, we implemented the method for singleton arc consistency (SAC) and compared it to other strong local consistencies in WCSPs on a public benchmark. The results show that the bounds obtained from SAC are superior for many instance groups.

View on arXiv
Comments on this paper