ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.03948
63
5
v1v2v3 (latest)

Function Computation Under Privacy, Secrecy, Distortion, and Communication Constraints

11 January 2022
Onur Gunlu
ArXiv (abs)PDFHTML
Abstract

The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include 1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals' observed sequences; 2) the information leakage to a fusion center with respect to the remote source is considered as a new privacy leakage metric; 3) the function computed is allowed to be a distorted version of the target function, which allows to reduce the storage rate as compared to a reliable function computation scenario in addition to reducing secrecy and privacy leakages; 4) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless and lossy single-function computation with two transmitting nodes, which recover previous results in the literature. For special cases that include invertible and partially-invertible functions, and degraded measurement channels, exact lossless and lossy rate regions are characterized, and one exact region is evaluated for an example scenario.

View on arXiv
Comments on this paper