ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.04399
17
20

RGRecSys: A Toolkit for Robustness Evaluation of Recommender Systems

12 January 2022
Zohreh Ovaisi
Shelby Heinecke
Jia Li
Yongfeng Zhang
Elena Zheleva
Caiming Xiong
ArXivPDFHTML
Abstract

Robust machine learning is an increasingly important topic that focuses on developing models resilient to various forms of imperfect data. Due to the pervasiveness of recommender systems in online technologies, researchers have carried out several robustness studies focusing on data sparsity and profile injection attacks. Instead, we propose a more holistic view of robustness for recommender systems that encompasses multiple dimensions - robustness with respect to sub-populations, transformations, distributional disparity, attack, and data sparsity. While there are several libraries that allow users to compare different recommender system models, there is no software library for comprehensive robustness evaluation of recommender system models under different scenarios. As our main contribution, we present a robustness evaluation toolkit, Robustness Gym for RecSys (RGRecSys -- https://www.github.com/salesforce/RGRecSys), that allows us to quickly and uniformly evaluate the robustness of recommender system models.

View on arXiv
Comments on this paper