ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.05943
33
3

TriLock: IC Protection with Tunable Corruptibility and Resilience to SAT and Removal Attacks

16 January 2022
Yuke Zhang
Yinghua Hu
Pierluigi Nuzzo
Peter A. Beerel
ArXiv (abs)PDFHTML
Abstract

Sequential logic locking has been studied over the last decade as a method to protect sequential circuits from reverse engineering. However, most of the existing sequential logic locking techniques are threatened by increasingly more sophisticated SAT-based attacks, efficiently using input queries to a SAT solver to rule out incorrect keys, as well as removal attacks based on structural analysis. In this paper, we propose TriLock, a sequential logic locking method that simultaneously addresses these vulnerabilities. TriLock can achieve high, tunable functional corruptibility while still guaranteeing exponential queries to the SAT solver in a SAT-based attack. Further, it adopts a state re-encoding method to obscure the boundary between the original state registers and those inserted by the locking method, thus making it more difficult to detect and remove the locking-related components.

View on arXiv
Comments on this paper