ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.06199
16
1

Proficiency Matters Quality Estimation in Grammatical Error Correction

17 January 2022
Yujin Takahashi
Masahiro Kaneko
Masato Mita
Mamoru Komachi
ArXivPDFHTML
Abstract

This study investigates how supervised quality estimation (QE) models of grammatical error correction (GEC) are affected by the learners' proficiency with the data. QE models for GEC evaluations in prior work have obtained a high correlation with manual evaluations. However, when functioning in a real-world context, the data used for the reported results have limitations because prior works were biased toward data by learners with relatively high proficiency levels. To address this issue, we created a QE dataset that includes multiple proficiency levels and explored the necessity of performing proficiency-wise evaluation for QE of GEC. Our experiments demonstrated that differences in evaluation dataset proficiency affect the performance of QE models, and proficiency-wise evaluation helps create more robust models.

View on arXiv
Comments on this paper