ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07367
17
38

Real-Time Gaze Tracking with Event-Driven Eye Segmentation

19 January 2022
Yu Feng
Nathan Goulding
Asif Khan
Hans Reyserhove
Yuhao Zhu
ArXivPDFHTML
Abstract

Gaze tracking is increasingly becoming an essential component in Augmented and Virtual Reality. Modern gaze tracking al gorithms are heavyweight; they operate at most 5 Hz on mobile processors despite that near-eye cameras comfortably operate at a r eal-time rate (>>> 30 Hz). This paper presents a real-time eye tracking algorithm that, on average, operates at 30 Hz on a mobile processor, achieves \ang{0.1}--\ang{0.5} gaze accuracies, all the while requiring only 30K parameters, one to two orders of magn itude smaller than state-of-the-art eye tracking algorithms. The crux of our algorithm is an Auto~ROI mode, which continuously pr edicts the Regions of Interest (ROIs) of near-eye images and judiciously processes only the ROIs for gaze estimation. To that end, we introduce a novel, lightweight ROI prediction algorithm by emulating an event camera. We discuss how a software emulation of events enables accurate ROI prediction without requiring special hardware. The code of our paper is available at https://github.com/horizon-research/edgaze.

View on arXiv
Comments on this paper