ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.07614
27
6

Uncovering More Shallow Heuristics: Probing the Natural Language Inference Capacities of Transformer-Based Pre-Trained Language Models Using Syllogistic Patterns

19 January 2022
Reto Gubelmann
Siegfried Handschuh
    ReLM
    LRM
ArXivPDFHTML
Abstract

In this article, we explore the shallow heuristics used by transformer-based pre-trained language models (PLMs) that are fine-tuned for natural language inference (NLI). To do so, we construct or own dataset based on syllogistic, and we evaluate a number of models' performance on our dataset. We find evidence that the models rely heavily on certain shallow heuristics, picking up on symmetries and asymmetries between premise and hypothesis. We suggest that the lack of generalization observable in our study, which is becoming a topic of lively debate in the field, means that the PLMs are currently not learning NLI, but rather spurious heuristics.

View on arXiv
Comments on this paper