ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09112
20
15

Safety-driven Interactive Planning for Neural Network-based Lane Changing

22 January 2022
Xiangguo Liu
Ruochen Jiao
Bowen Zheng
Davis Liang
Qi Zhu
ArXivPDFHTML
Abstract

Neural network-based driving planners have shown great promises in improving task performance of autonomous driving. However, it is critical and yet very challenging to ensure the safety of systems with neural network based components, especially in dense and highly interactive traffic environments. In this work, we propose a safety-driven interactive planning framework for neural network-based lane changing. To prevent over conservative planning, we identify the driving behavior of surrounding vehicles and assess their aggressiveness, and then adapt the planned trajectory for the ego vehicle accordingly in an interactive manner. The ego vehicle can proceed to change lanes if a safe evasion trajectory exists even in the predicted worst case; otherwise, it can stay around the current lateral position or return back to the original lane. We quantitatively demonstrate the effectiveness of our planner design and its advantage over baseline methods through extensive simulations with diverse and comprehensive experimental settings, as well as in real-world scenarios collected by an autonomous vehicle company.

View on arXiv
Comments on this paper