ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09352
34
5

Out of Distribution Detection on ImageNet-O

23 January 2022
Anugya Srivastava
S. Jain
Mugdha Thigle
    OOD
ArXivPDFHTML
Abstract

Out of distribution (OOD) detection is a crucial part of making machine learning systems robust. The ImageNet-O dataset is an important tool in testing the robustness of ImageNet trained deep neural networks that are widely used across a variety of systems and applications. We aim to perform a comparative analysis of OOD detection methods on ImageNet-O, a first of its kind dataset with a label distribution different than that of ImageNet, that has been created to aid research in OOD detection for ImageNet models. As this dataset is fairly new, we aim to provide a comprehensive benchmarking of some of the current state of the art OOD detection methods on this novel dataset. This benchmarking covers a variety of model architectures, settings where we haves prior access to the OOD data versus when we don't, predictive score based approaches, deep generative approaches to OOD detection, and more.

View on arXiv
Comments on this paper