ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09774
17
2

Hiding Behind Backdoors: Self-Obfuscation Against Generative Models

24 January 2022
Siddhartha Datta
N. Shadbolt
    SILM
    AAML
    AI4CE
ArXivPDFHTML
Abstract

Attack vectors that compromise machine learning pipelines in the physical world have been demonstrated in recent research, from perturbations to architectural components. Building on this work, we illustrate the self-obfuscation attack: attackers target a pre-processing model in the system, and poison the training set of generative models to obfuscate a specific class during inference. Our contribution is to describe, implement and evaluate a generalized attack, in the hope of raising awareness regarding the challenge of architectural robustness within the machine learning community.

View on arXiv
Comments on this paper