ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.09948
25
5

ReLSO: A Transformer-based Model for Latent Space Optimization and Generation of Proteins

24 January 2022
Egbert Castro
Abhinav Godavarthi
Julian Rubinfien
Kevin B. Givechian
Dhananjay Bhaskar
Smita Krishnaswamy
ArXivPDFHTML
Abstract

The development of powerful natural language models have increased the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labeled fitness data. Leveraging these two trends, we introduce Regularized Latent Space Optimization (ReLSO), a deep transformer-based autoencoder which features a highly structured latent space that is trained to jointly generate sequences as well as predict fitness. Through regularized prediction heads, ReLSO introduces a powerful protein sequence encoder and novel approach for efficient fitness landscape traversal. Using ReLSO, we explicitly model the sequence-function landscape of large labeled datasets and generate new molecules by optimizing within the latent space using gradient-based methods. We evaluate this approach on several publicly-available protein datasets, including variant sets of anti-ranibizumab and GFP. We observe a greater sequence optimization efficiency (increase in fitness per optimization step) by ReLSO compared to other approaches, where ReLSO more robustly generates high-fitness sequences. Furthermore, the attention-based relationships learned by the jointly-trained ReLSO models provides a potential avenue towards sequence-level fitness attribution information.

View on arXiv
Comments on this paper