ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.10469
38
46

Convex Analysis of the Mean Field Langevin Dynamics

25 January 2022
Atsushi Nitanda
Denny Wu
Taiji Suzuki
    MLT
ArXivPDFHTML
Abstract

As an example of the nonlinear Fokker-Planck equation, the mean field Langevin dynamics recently attracts attention due to its connection to (noisy) gradient descent on infinitely wide neural networks in the mean field regime, and hence the convergence property of the dynamics is of great theoretical interest. In this work, we give a concise and self-contained convergence rate analysis of the mean field Langevin dynamics with respect to the (regularized) objective function in both continuous and discrete time settings. The key ingredient of our proof is a proximal Gibbs distribution pqp_qpq​ associated with the dynamics, which, in combination with techniques in [Vempala and Wibisono (2019)], allows us to develop a simple convergence theory parallel to classical results in convex optimization. Furthermore, we reveal that pqp_qpq​ connects to the duality gap in the empirical risk minimization setting, which enables efficient empirical evaluation of the algorithm convergence.

View on arXiv
Comments on this paper