ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.11187
26
0

DIREG3D: DIrectly REGress 3D Hands from Multiple Cameras

26 January 2022
Ashar Ali
U. Mahbub
G. Dane
Gerhard Reitmayr
    3DH
ArXivPDFHTML
Abstract

In this paper, we present DIREG3D, a holistic framework for 3D Hand Tracking. The proposed framework is capable of utilizing camera intrinsic parameters, 3D geometry, intermediate 2D cues, and visual information to regress parameters for accurately representing a Hand Mesh model. Our experiments show that information like the size of the 2D hand, its distance from the optical center, and radial distortion is useful for deriving highly reliable 3D poses in camera space from just monocular information. Furthermore, we extend these results to a multi-view camera setup by fusing features from different viewpoints.

View on arXiv
Comments on this paper