ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2201.11312
14
1

A Higher-Order Semantic Dependency Parser

27 January 2022
Bin Li
Yunlong Fan
Yikemaiti Sataer
Zhiqiang Gao
    GNN
ArXivPDFHTML
Abstract

Higher-order features bring significant accuracy gains in semantic dependency parsing. However, modeling higher-order features with exact inference is NP-hard. Graph neural networks (GNNs) have been demonstrated to be an effective tool for solving NP-hard problems with approximate inference in many graph learning tasks. Inspired by the success of GNNs, we investigate building a higher-order semantic dependency parser by applying GNNs. Instead of explicitly extracting higher-order features from intermediate parsing graphs, GNNs aggregate higher-order information concisely by stacking multiple GNN layers. Experimental results show that our model outperforms the previous state-of-the-art parser on the SemEval 2015 Task 18 English datasets.

View on arXiv
Comments on this paper